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A physical model for compressible flows with phase transition is described, in which all
the processes of phase transition, i.e. nucleation, droplet growth, droplet evaporation
and de-nucleation, are incorporated. The model is focused on dilute mixtures of
vapour and droplets in a carrier gas with typical maximum liquid mass fraction
smaller than 0.02. The new model is based on a reinterpretation of Hill’s method
of moments of the droplet size distribution function. Starting from the general
dynamic equation, it is emphasized that nucleation or de-nucleation correspond to
the rates at which droplets enter or leave droplet size space, respectively. Nucleation
and de-nucleation have to be treated differently in agreement with their differences
in physical nature. Attention is given to the droplet growth model that takes into
account Knudsen effects and temperature differences between droplets and gas. The
new phase transition model is then combined with the Euler equations and results
in a new numerical method: ASCE2D. The numerical method is first applied to
the problem of shock/expansion wave formation in a closed shock tube with humid
nitrogen as a driver gas. Nucleation and droplet growth are induced by the expansion
wave, and in turn affect the structure of the expansion wave. When the main shock,
reflected from the end wall of the low-pressure section, passes the condensation zone,
evaporation and de-nucleation occur. As a second example, the problem of the flow
of humid nitrogen in a pulse-expansion wave tube, designed to study nucleation and
droplet growth in monodisperse clouds, is investigated experimentally and numerically.

1. Introduction
When a humid gas undergoes a fast expansion, the mixture may attain a state

of supersaturation and, as a consequence, droplets are formed, which will grow or
shrink and disappear, depending on the flow characteristics. If the expansion is
sufficiently strong, droplets will be formed directly from the vapour phase, a process
known as homogeneous nucleation (Abraham 1974; Kashchiev 2000). An important
aspect of the condensation process is the release of latent heat. Adding heat to a
flow at transonic velocities, may have a strong impact on the flow, for example
resulting in condensation-induced flow instabilities (see Wegener & Cagliostro 1973;
Sislian & Glass 1976; Sichel 1981; Matsuo et al. 1983, 1985; Adam & Schnerr

† Present address: Shock wave laboratory, RWTH-Aachen, 52062, Aachen, Germany. xLuo@
swl.rwth-aachen.de.
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1997; Delale, Lamanna & van Dongen 2001). Condensation phenomena are observed
above the suction side of wings in transonic flight and in wing-tip vortices. They are
found in steam turbines, in supersonic windtunnels, and in high-pressure pipelines
after the sudden opening of pressure relief valves. Gasdynamic facilities such as
Laval nozzles and expansion wave tubes offer excellent possibilities for studying the
physics of droplet formation and droplet growth, and determining nucleation rates for
gas/vapour mixtures in a wide range of pressure, temperature and supersaturation
(Looijmans & van Dongen 1997; Peeters, Hrubý & van Dongen 2001a; Peeters,
Gielis & van Dongen 2002).

In the literature, effects of phase transition in unsteady flows have been studied in
detail, including theoretical, experimental and numerical approaches. A review can be
found in Adam & Schnerr (1997) and Luo & van Dongen (2003). Related numerical
studies on the evaporation of droplets in turbulent flows have been reported by
Mashayek (1998) and Miller & Bellan (1999).

The present study is focused on condensation and evaporation phenomena in
dilute mixtures of vapour, droplets and a carrier gas with typical maximum liquid
mass fractions of the order of 0.01. The droplets to be considered remain small
with a typical maximum diameter of 1 µm. The generation, transport and growth of
droplets is described by the conservation laws for a finite number of moments of the
droplet size distribution function. The method of moments is commonly used in work
on aerosol behaviour in the earth’s atmosphere and in aerosol reactors. Hill (1966)
introduced this method for the study of nozzle flows with condensation. Hill’s method
consists of tracking the evolution in time and space of a small number of (low-order)
moments of the droplet size distribution. Subject to certain assumptions, it appears
to be possible to give a full description of the condensation processes in terms of
transport equations for the first four moments of the size distribution function. Many
numerical studies based on this method have been reported. Brown, Rubin & Biswas
(1995) applied this method incorporating the effects of nucleation, condensation,
coagulation, diffusion, inertial impaction and thermophoresis in combination with a
RANS (Reynolds averaged Navier–Stokes) method to two-dimensional axi-symmetric
and three-dimensional flows including the flow in a nozzle. Mundinger’s work
(Mundinger 1994) is also based on this method in combination with the Euler
equations. Prast (1997) developed a computational method to simulate supersonic
nozzle flows with condensation based on the work of Mundinger. Put et al. (2001,
2002) and Put (2003) extended this method including real gas effects.

Most of these numerical methods are able to describe nucleation and condensation
phenomena in unsteady flows, but they ignore the disappearance of droplets owing to
evaporation, which may occur when the droplet cloud is compressed or heated, e.g.
when a strong shock wave passes the condensation zone. This de-nucleation has to
be accounted for, because otherwise erroneous heterogenous condensation will take
place in subsequent expansions of the flow. In order to overcome this difficulty, an
extension of Hill’s method of moments has been proposed (Luo & van Dongen 2003),
in which the processes of phase transition including de-nucleation are incorporated.
In the present study, we consider the underlying physical principles in more detail.

This paper is organized as follows. In § 2, the nucleation theory is briefly described
and some basic concepts such as saturation ratio and critical droplet size are given.
Then the droplet growth model is discussed with emphasis on the calculation of
the temperature of the droplet. In § 3, starting from the general dynamic equation,
the extended method of moments of the size distribution function is developed. In
§ 4, the set of governing equations of the gas/vapour–droplet mixture is obtained
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by combining the method of moments of the size distribution function with the
Euler equations. Section 4 also specifies the equation of state of the gas/vapour–
droplet mixture and briefly describes the new numerical method, i.e. an adaptive
solver for condensation and evaporation, which implements the new physical model.
Section 5 demonstrates the effects of phase transition on the flow field by numerically
simulating the flow in a closed shock tube with humid nitrogen. Section 6 is devoted
to the experimental and numerical study of the flow in a so-called pulse-expansion
wave tube, which forms the test case for the validation of the present physical model.
Conclusions are drawn in § 7.

2. Nucleation theory and droplet growth
2.1. Nucleation theory

For vapour–liquid phase equilibrium, the vapour pressure pv is equal to the saturated
vapour pressure ps , which is, in a one-component system, a function of temperature
only: ps = ps(T ). If a vapour is in a supersaturated state, pv >ps , droplets will
be formed such that the system tends to a new equilibrium. The non-equilibrium
parameter for an ideal vapour is the saturation ratio S, defined as:

S = pv/ps(T ). (2.1)

Vapour–liquid equilibrium for a droplet of radius r is different from vapour–liquid
equilibrium near a flat interface. This is due to the surface tension, which causes the
pressure inside a droplet to exceed the pressure outside the droplet.

For a droplet with radius r in a metastable equilibrium state, we then find the
so-called Kelvin expression (Sonntag, Borgnakke & van Wylen 1998):

peq
v

ps

= exp

(
vml2σ

rRmT

)
= exp(Ke), (2.2)

where superscript ‘eq ’ denotes the equilibrium state and the Kelvin number is defined
as Ke= vml2σ/rRmT with σ the surface tension, vml the molar liquid volume and Rm

the universal gas constant.
From (2.2), we see that the equilibrium vapour pressure is related to the size of the

droplet. For a given uniform vapour pressure, pv > ps , and for a cloud of droplets
with a wide range of sizes, there exists a metastable equilibrium for one particular
droplet size: pv = peq

v = Sps . Inserting this into (2.2) we find the critical size for a
droplet r∗:

r∗ ≡ 2σvml

RmT ln S
. (2.3)

Droplets with size r > r∗ will tend to grow. Droplets with r < r∗ are subsaturated and
tend to disappear. Droplets with size r∗ are called critical droplets.

The homogeneous nucleation rate is defined as the rate at which critical droplets
are able to catch additional vapour molecules and in this way pass the energy barrier
�G∗ for the formation of stable droplets. The value of this energy barrier reads:

�G∗ =
v̂2

ml

(kBT )2(ln S)2
16π

3
σ 3, (2.4)

with v̂ml the molecular volume, kB the Boltzmann constant kB = Rm/NA where NA is
Avogadro’s number.
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For the nucleation rate, expressions are found of the form:

J = K exp(−�G∗/kBT ). (2.5)

The factor K is called the kinetic prefactor. We specify here two different expressions
for this kinetic prefactor (Kashchiev 2000):

KCNT = S
p2

s

(kBT )2
v̂ml

(
2σNA

πm

)1/2

, (2.6)

with m the molar mass, which corresponds to the classical nucleation theory (CNT)†,
and

KICCT = KCNT exp

(
σa0

kBT

)
, (2.7)

with a0 = (36π)1/3v̂
2/3
ml , which is referred to as the internally consistent classical

nucleation theory (ICCT). ICCT is implemented in the present numerical method.

2.2. Droplet growth

Once a stable cluster has been formed, it will grow into a droplet, suspended in the
carrier gas–vapour mixture. The process that governs the growth depends to a large
extent on the Knudsen number Kn. This dimensionless group is defined as the ratio
of the mean free path l of a vapour molecule and the droplet diameter 2r: Kn= l/2r ,
where the mean free path is given by l = 2µ

√
RT /p, with µ the dynamic viscosity

of the gas mixture, R the specific gas constant of the mixture, T the temperature
of the gas/vapour and p the pressure of the mixture. For small Kn, i.e. relatively
large droplets, droplets are growing by vapour molecules diffusing to the droplet
surface in a more or less continuous way. This is called the continuum regime or the
diffusion-controlled regime. For large Kn, i.e. small droplets, the growth is controlled
by the kinetic process of impingement of vapour molecules from the surrounding
mixture onto the droplet. This is the free molecular regime. Thus, a growth model
applicable from the moment of nucleation (nm-scale) to the time the droplets have
grown to µm scale should cover the whole range of Knudsen numbers.

There exist many approximate theories to describe droplet growth with dependence
on the Knudsen-number as discussed, by among others, Miller, Harstad & Bellan
(1998) and Peeters, Luijten & van Dongen (2001b). Based on an accurate experimental
validation, Peeters et al. (2001b) have compared the Gyarmathy model (Gyarmathy
1982) and the more sophisticated model of Young (1993). Because the Gyarmathy
model performs reasonably well for the whole Knudsen domain investigated, and
because of its simple form, we have implemented this model. It expresses the growth
rate at intermediate Kn numbers in terms of the growth rates in the two limiting
cases of Kn � 1 and Kn → ∞. In the continuum limit, the driving force for droplet
growth in a dilute gas/vapour mixture is the difference between the vapour pressure
at the surface peq

v and the vapour pressure in the bulk pv . The vapour at the droplet
surface is assumed to be in local phase equilibrium with the droplet at temperature
Td . However, since latent heat is released or absorbed owing to the phase transition
process, the droplet temperature is governed by the exchange of latent heat between
droplet and surrounding gas. In the so-called quasi-steady wet-bulb approximation,
there is a simple relation between the mass flow from the droplet to the environment

† In CNT, the original expression for K contains a factor S2. Nowadays (Oxtoby 1992), it is
generally accepted that the correct factor is S.
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Ṁ and the heat flow from the droplet to the environment Ḣ :

Ḣ = −ṀL, (2.8)

with L the latent heat.
Droplet mass and heat flows can be described in a rather general form, including

effects of Knudsen numbers and of convection in a formal way by means of the
Nusselt numbers NuM and NuH . We then write Ṁ and Ḣ as:

Ṁ = 4πr2NuṀ

(
peq

v − pv

)
p

Dmod

2r
,

Ḣ = 4πr2NuḢ (Td − T )
km

2r
,


 (2.9)

where Dmod is the modified diffusion coefficient, defined as Dmod = Dmp/(RvTm) with
Rv the specific gas constant of the vapour. The thermal conductivity km, and the
binary diffusion coefficient Dm are evaluated at the intermediate temperature Tm,
defined as (Hubbard, Denny & Mills 1975):

Tm = 1
3
(2Td + T ). (2.10)

The Nusselt numbers depend on the Knudsen number and on the relative Reynolds
number referring to the slip velocity between droplets and carrier gas. We shall
assume here that there is no slip between droplets and carrier gas, which is a
valid assumption if the Stokes number, St = τd/τf , is sufficiently small. The droplet
momentum relaxation time for Stokes flow τd is equal to 2r2ρl/9µ, while τf is the
characteristic time for the rate of change of flow momentum. For the small droplets
we consider, r � 0.5 µm, and typical values for τf of 1 µs, the Stokes number is much
smaller than unity. Then, the Nusselt numbers depend only on the Knudsen number.
The Nusselt numbers for the two limiting regimes and the one for the transition
regime (without slip, dilute mixtures) are specified in Appendix B.

Equations (2.8) and (2.9) result in an implicit formula to calculate the droplet
temperature Td:

NuḢ km(T − Td) = −NuṀL(Td)Dmod

pv − peq
v

p
. (2.11)

The droplet growth rate can then be expressed either by the energy conservation
law or by the mass conservation law:

dr2

dt
=

Nutr
Ḣ km

ρlL
(Td − T ) = −Nutr

ṀDmod

ρl

pv − peq
v

pa

, (2.12)

where superscription ‘tr ’ denotes variables evaluated using the expressions in the
transition regime, subscription ‘a ’ denotes the carrier gas and ρl is the density of
liquid water.

2.3. Explicit method for Td

To obtain the droplet temperature Td , the quasi-steady wet-bulb equation, (2.11) has
to be solved. It can be solved accurately by an iterative method. Unfortunately,
since (2.11) has to be solved for each point in the flow, this evaluation is expensive
in terms of computing time. Therefore explicit approximate expressions have been
proposed by several authors (Mason 1953; Gyarmathy 1963; Wagner 1982; Barrett &
Clement 1988). Smolders (1992) evaluated these explicit models and concluded
that Gyarmathy’s model gives the best results and also formulated a second-order
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correction to the Gyarmathy model:(
Td

T
− 1

)
= f (S, Ke)[C1 + C2]

−1(1 − δ1), (2.13)

where

δ1 ≈
1
2
C2

1 − C2

(C1 + C2)2
(ln S − Ke), (2.14)

f (S, Ke) = ln S − Ke,

C1 =
T

θS

(
p

ps

− S

)
,

C2 =
L

RvT
,

with θ =DmodLNutr
Ṁ/(kmNutr

Ė).
We assessed the accuracy of the explicit expression (2.13) comparing it to the

solution of the implicit expression (2.11) for processes including evaporation (S < 1). It
is found that for the strong evaporation associated with strong shock waves, adopting
the implicit method is mandatory since the explicit method causes large errors
( > 10%) in estimating the temperature of the droplets Td . For lower temperatures and
higher saturation ratios, it appears that using the implicit method is again inevitable.
More details can be found in Appendix C. In the present study, the flow conditions
are such that the use of the explicit method is allowed.

3. The extended method of moments
It was recently shown by Hagmeijer (2004) that Hill’s moment equations, to

describe nucleation and droplet growth processes, can be derived from the so-called
general dynamic equation (GDE, Friedlander 1977). In this section, we shall derive
a generalized version of Hill’s moment equations, also starting from the GDE,
describing both condensation and evaporation processes.

3.1. Size distribution function and moment method

Generally, a droplet cloud can be characterized by its size distribution function f

defined such that f (r; x, t) gives the number density of particles with radius between
r and r + dr at time t at position x. The droplet number density nd(x, t) is defined
as the number of droplets per unit volume exceeding a certain minimum radius rb,
which is generally a function of space and time, i.e. rb = rb(x, t), and will be specified
later:

nd(x, t) =

∫ ∞

rb

f (r; x, t) dr. (3.1)

In a well-mixed fluid, f (r; x, t) satisfies an equation known as the GDE, which
describes the evolution of the size distribution in time when the particles undergo
condensational growth, removal and coagulation. We consider the motion of non-
slipping droplets that experience condensation/evaporation only. In that case, the
GDE reduces to:

∂f

∂t
+ ∇ · (f v) +

∂

∂r

(
f

dr

dt

)
=0. (3.2)

The mass-averaged velocity is denoted by v and dr/dt is the Lagrangian growth rate of
a droplet owing to condensation or evaporation. When condensation or evaporation
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Figure 1. The shift of the size distribution function in size space due to (a) condensation or
(b) evaporation. rb denotes the lower bound of the droplet radius. Note rb is also changing
during condensation or evaporation.

takes place, the size distribution per unit mass, f (r)/ρ, will shift in size space, as
shown in figure 1. Here, ρ is the density of the mixture.

The so-called moment equations are obtained by multiplying (3.2) by rn and then
integrating over r from rb to infinity, which yields:∫ ∞

rb

∂

∂t
(rnf ) dr +

∫ ∞

rb

∇ · (rnf v) dr = fbr
n
b

(
dr

dt

)
b

+

∫ ∞

rb

nf rn−1 dr

dt
dr, (3.3)

with rb the lower bound of the size distribution function, fb the value of the size
distribution function at rb, and (dr/dt)b the growth rate at rb. Since rb = rb(x, t), the
left-hand side can be rewritten as:

∂

∂t

∫ ∞

rb

rnf dr + ∇ ·
∫ ∞

rb

rnf v dr + rn
b fb

∂rb

∂t
+ rn

b fbv · ∇rb. (3.4)

The last two terms are equal to rn
b fbdrb/dt with drb/dt the rate of change of the lower

bound rb when moving with the mass element. Therefore, (3.3) can be rewritten as:

∂

∂t

∫ ∞

rb

f rndr +∇ ·
[
v

(∫ ∞

rb

f rndr

)]
= fbr

n
b

[(
dr

dt

)
b

− drb

dt

]
+

∫ ∞

rb

nf rn−1 dr

dt
dr. (3.5)

The last term in (3.5) can be approximated as n(dr/dt)
∫ ∞

rb
f rn−1 dr with dr/dt an

average growth rate, i.e.

dr

dt
=

∫ ∞

rb

dr

dt
f (r) dr∫ ∞

rb

f (r) dr

. (3.6)

Here, it is assumed that the growth rate (dr/dt) is independent of r , or weakly
depending on r , which is certainly valid in the Hertz–Knudsen regime (Kn> 2),
neglecting the so-called Kelvin effect (Gyarmathy 1982).

Introducing the moment Qn as:

ρQn =

∫ ∞

rb

rnf dr, (3.7)

we then have:

∂

∂t
(ρQn) + ∇ · (ρQnv) = n

dr

dt
ρQn−1 + fbr

n
b

[(
dr

dt

)
b

− drb

dt

]
. (3.8)
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Following Hill, a full set of equations is obtained by combining the first four moment
equations (n= 0, 1, 2, 3) with the conservation laws of total mass, momentum and
energy for the whole mixture. In the present study, we use the liquid mass fraction g,
defined as the ratio of the mass of the liquid droplets Ml and the mass of the mixture
M , instead of the third-order moment Q3. According to the definition of Q3 and g,
they are directly related through g =4πρlQ3/3.

3.2. Physical model for condensation

If the saturation ratio S > 1, the condensation process dominates. In this case, new
droplets are formed which enter the size space by crossing the lower boundary rb at
the so-called critical radius r∗. At the same time, the size distribution function will
shift to the right.

From the definition of the moments, the zeroth-order moment Q0 is equal to the
number density of droplets per unit mass nd/ρ and therefore Q0 is fully determined
by the nucleation rate Jn:

∂

∂t
(ρQ0) + ∇ · (ρQ0v) = Jn. (3.9)

Thus, the nucleation rate Jn can be identified as:

Jn ≡ fb

[(
dr

dt

)
b

− drb

dt

]
. (3.10)

It is a positive quantity that can be directly derived from nucleation theory. The lower
bound rb is just the critical radius r∗: rb ≡ r∗.

Then the four moment equations are identical with the original moment equations
of Hill for nucleation and condensation (Hill 1966).

3.3. Physical model for evaporation

If the saturation ratio S < 1, then the evaporation process takes over and dr/dt < 0.
In this case, the droplets will cross the lower bound rb and disintegrate into vapour
molecules. This implies that the number density and the median size of the droplets
will decrease, so the size distribution function will shift to the left. We define the
de-nucleation rate Jdn for S < 1 as:

Jdn ≡ fb[(dr/dt)b − drb/dt]. (3.11)

To evaluate Jdn, however, we have to find an estimate of fb and of [(dr/dt)b −drb/dt],
which means that we have to adopt a lower bound of the radius rb and a distribution
function f in size space. For simplicity, we first take the radius rb to be constant,
equal to zero. Therefore, [(dr/dt)b − drb/dt] reduces to (dr/dt)0 and Jdn is defined
as f0(dr/dt)0 with subscript ‘0’ referring to rb = 0. In order to proceed, we need
information on the size distribution function f at the onset of evaporation. Although
this knowledge is available in principle through the moments of the size distribution
function, we choose here a more practical approach. The shape of the size distribution
function is assumed to have a certain form, characterized by a parameter vector SP .
For example, the shape of a normalized Gaussian distribution is fully determined by
its variance σd . The values of the shape parameters follow from the moments of f .
Since the droplet growth rate is assumed to be independent of droplet radius, following
the path of a mass element, the size distribution function f/ρ shifts undistorted to
smaller radii. We shall refer to the properties of this undistorted size distribution at
the onset of evaporation as the onset number density no

d =(nd/ρ)o and as the onset
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Case f SP f0

Top-hat




ρnd0

(r2 − r1)
, r ∈ (r1, r2);

0, r 
∈ (r1, r2),

√
3Q2

10Q0

+
9Q3

10Q1

− 6Q2
1

5Q2
0




ρno
d0

2So
P

, rm < So
P ;

0, rm � So
P ,

Gaussian
ρnd0√
2πσd

exp
(
−(r − rm)2/2σ 2

d

) √
Q2

2 − Q1Q3

Q0Q2 − 2Q2
1

ρno
d0√

2πSo
P

exp[−2
(
rm/2So

P

)2
]

Table 1. Examples for the shape parameter and f0 using a top-hat and a Gaussian size
distribution function, respectively. rm denotes the modal radius. It should be noted that the
vector SP contains only one element in these two examples.

shape vector So
P with superscript ‘o’ referring to the onset of evaporation. Since the

size distribution f (r)/ρ keeps its shape, no
d and So

P are constants along a Lagrangian
trajectory as long as evaporation occurs. In Eulerian notation we have:

∂

∂t

(
ρno

d

)
+ ∇ ·

(
ρno

dv
)

= 0,

∂

∂t

(
ρSo

P

)
+ ∇ ·

(
ρSo

P v
)

= 0.


 (3.12)

In order to specify fully the shifting size distribution function that preserves its
shape, we introduce first the modal radius at the onset of evaporation r0

m. The
‘position’ of the distribution function in size space is then fully defined by rc

m which
satisfies:

rc
m = ro

m +

∫ t

t0

dr

dt
dt, (3.13)

where integration refers to a Lagrangian trajectory and t0 refers to the moment
evaporation starts. Now the de-nucleation rate Jdn can be expressed as:

Jdn = f0

dr

dt
, (3.14)

where f0 is determined from the size distribution function with the known parameters
no

d , So
P and rc

m. This enables us to evaluate the right-hand side of (3.8).
As examples, the shape parameter and the corresponding f0 for a top-hat and a

Gaussian size distribution function are given in table 1. For the top-hat function, the
shape parameter is defined here as the half-width of the size distribution function,
which is determined by the upper and lower radii, r1 and r2. For the Gaussian
distribution function, the shape parameter is set equal to the standard variance σd .
Detailed descriptions about the model based on these two size distribution functions
can be found in Luo & van Dongen (2003) and Luo (2004).

4. Governing equations and numerical method
The fluid dynamical behaviour of the two-phase system of gas/vapour and droplets

is described by the system of conservation equations, Euler or Navier–Stokes,
supplemented with the model for phase transition. Combining the moment equations
of the size distribution with the Euler equations for time-dependent two-dimensional
flow, the governing equation for the complete system can be written in the vectorial
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form:
∂U
∂t

+
∂ F
∂x

+
∂G
∂y

= S, (4.1)

where U is the vector of unknowns, F and G represent the convective fluxes in the
x- and y-direction, respectively, and S is the source term:

U =




ρ

ρu

ρv

ρE

ρg

ρQ2

ρQ1

ρQ0




; F =




ρu

ρu2 + p

ρuv

(ρE + p)u
ρgu

ρQ2u

ρQ1u

ρQ0u




; G =




ρv

ρuv

ρv2 + p

(ρE + p)v
ρgv

ρQ2v

ρQ1v

ρQ0v




, (4.2)

S =




0
0
0
0

4
3
πρl

(
J r3

b + 3ρQ2

dr

dt

)

J r2
b + 2ρQ1

dr

dt

J rb + ρQ0

dr

dt

J




,

where E is the total energy per unit mass of mixture, u and v the velocity in the x-
and y-direction, respectively.

The first four components of the source term are zero, since we consider
conservation laws for the mixture of gas, vapour and droplets as a whole. When
the saturation ratio S is larger than unity, the nucleation theory is employed to
determine the nucleation rate J . In that case, the lower bound rb equals the critical
radius r∗, which follows from nucleation theory as well. Where S is less than unity,
the evaporation model is used to evaluate the de-nucleation rate J , while the lower
bound rb is set equal to zero.

4.1. Thermodynamic properties

We shall assume the vapour to be a calorically perfect gas and the latent heat to be a
linear function of temperature. In that case, the temperature of the gas/vapour T , the
pressure of the mixture p and the frozen sound speed of the mixture cf can be related
to the internal energy per unit mass of the mixture e (consisting of contributions from
the three components, i.e. the carrier gas, the vapour and the liquid) and the liquid
mass fraction g according to Mundinger (1994):

T =
e + gL0

Cv0 + g0Cvv + g(Rv − L1)
, (4.3)

p = ρ
e + gL0

Cv0 + g0Cvv + g(Rv − L1)
[R0 − (g − g0)Rv], (4.4)
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c2
f =

p

ρ

Cp0 + g0Cpv − gL1

Cv0 + g0Cvv + g(Rv − L1)
, (4.5)

with Cv0 and Cp0 the initial specific heats at constant density and pressure of the
mixture, respectively, R0 the initial gas constant of the mixture, and g0 the initial
liquid mass fraction. The latent heat has been linearized, L =L0 +L1T , at a reference
temperature.

It should be noted that in (4.3) the difference between droplet temperature and
gas temperature has been neglected, which is a good approximation for the dilute
mixtures considered. The internal energy per unit mass e relates to the total energy
per unit mass E as:

e = E − 1
2
(u2 + v2). (4.6)

All the physical parameters and the physical properties of the mixtures considered
in the present study are given in Appendix A.

4.2. Adaptive solver for condensation and evaporation: ASCE2D

The extended nucleation/condensation model has been implemented in a numerical
method. Based on the fractional-step-method (Oran & Boris 1987), the governing
equations are split in two parts: the homogeneous part without source terms and the
inhomogeneous part with the source terms due to phase transition, i.e.

∂Uhom

∂t
+

∂ F
∂x

+
∂G
∂y

= 0, (4.7)

∂U
∂t

= S(Uhom). (4.8)

The homogeneous part is solved by applying the same method as used in VAS2D
developed by Sun (1998) and Sun & Takayama (1999) for compressible flows. For
the inhomogeneous part, the treatment by Mundinger (1994) and Prast (1997) is
followed. The combination of the two methods has been developed into a new
numerical method: ASCE2D (two-dimensional and axi-symmetric adaptive solver for
condensation and evaporation). The finite-volume method is used to discretize the
conservation laws by applying them directly to each non-overlapping control volume.
The MUSCL-Hancock scheme (van Leer 1984), a second-order upwind scheme has
been adopted to compute the flux through the cell interface. In the new method, the
equations have been discretized on an unstructured quadrilateral mesh that adapts
to the time-dependent flow. The adaptation criterion uses the maximum of the error
sensor of the density and the two velocity components. Our experience so far is that
the method can handle all important physical phenomena in compressible flows, such
as expansion waves, shock waves, contact surfaces and vortices.

The treatment of boundary conditions is similar to that of VAS2D, i.e. image
cells are used for solid wall boundaries or symmetry lines, such that the normal
component of the velocity vanishes. For a detailed description of the implementation
of the boundary conditions and of the accuracy of this method, see Sun (1998) and
Luo (2004).

We shall first study the problem of the flow in a closed shock tube, with humid
nitrogen as the driver gas, in which the effect of phase transition is demonstrated
clearly. Then the flow in a pulse-expansion wave tube, with helium as the carrier
gas, used for determining nucleation rates and droplet growth rates, is investigated
experimentally and numerically in detail to validate the present method.
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HPS (1 bar, 298 K) LPS (0.4 bar, 298 K)

D

1 m

Figure 2. Sketch of the closed shock tube. The shock tube has a total length of 1m and
a diaphragm D initially divides it into two equal parts, the high-pressure section (HPS) and
the low-pressure section (LPS). The tube is filled with either dry nitrogen or humid nitrogen
(initial saturation ratio of 0.8 in the HPS and of 0.32 in the LPS).

5. Phase transition in a closed shock tube
The numerical method is applied to the expansion and compression of humid

nitrogen in a closed shock tube, as shown in figure 2. The shock tube has a total
length of 1 m and is divided into two equal parts initially separated by a diaphragm
D. Initial pressures chosen are 1 bar and 0.4 bar in the high-pressure section (HPS)
and the low-pressure section (LPS), respectively. The temperature of the gas in both
sections is 298 K. The tube is filled with either dry nitrogen or humid nitrogen (initial
saturation ratio of 0.8 in the HPS and of 0.32 in the LPS). A top-hat size distribution
function is employed to evaluate the de-nucleation rate (using a Gaussian distribution
function yields results that are only slightly different). Results for humid nitrogen are
compared with results for dry nitrogen.

After removal of the diaphragm, an instantaneous local pressure equilibration
occurs which leads to the formation of a right-running shock wave and a right-
running contact surface. At the same time, an expansion fan propagates to the left
into the HPS and causes the density of the gas to decrease. Figure 3 shows space–
time diagrams of density contours for the dry and humid nitrogen case. The shock
wave reflects at the endwall of the LPS and the reflected shock interacts with the
contact surface, which results in a weak shock wave travelling to the right and
a transmitted shock wave continuing to the left. Then the shock wave encounters
the expansion wave reflected from the endwall of the HPS, which complicates the
flow field further. This problem exhibits several interactions of nonlinear waves: the
shock wave, the reflected shock wave at the LPS, the re-reflected shock wave at
the HPS endwall, the contact surface (only mildly smeared), the expansion wave,
the reflected expansion wave at the HPS endwall and the re-reflected expansion
wave at the LPS endwall. The interactions between these waves are captured by
the present numerical method, which demonstrates that the method can handle all
important interactions in compressible flows. In the humid nitrogen case, the fast
expansion causes homogeneous nucleation and subsequently droplet growth. Owing
to the latent heat release during the condensation, a pressure wave is generated, which
affects the nucleation process and results in a distortion of the expansion fan. On the
other hand, the shock reflected from the endwall of the LPS passes the condensation
zone and causes evaporation. Therefore, both condensation and evaporation occur in
this relatively simple configuration. The wave pattern is more complex in the humid
nitrogen case than that in the dry nitrogen case owing to the latent heat released
to, or absorbed from, the flow during phase transition. To demonstrate the effect of
phase transition on the flow field, results of temperature and pressure are shown for
times 2.5 and 6.5 ms.

As shown in figure 4 for t =2.5 ms, the homogeneous nucleation and condensation
process causes a higher pressure level in the reflected expansion wave and a steepening
of the pressure distribution, leading to a weak condensation shock. Owing to the latent
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Figure 3. Density contours for the closed shock tube problem in a space–time diagram in
(a) dry and (b) humid nitrogen. Initial pressures are 1 bar and 0.4 bar in the high-pressure
(HPS) and low-pressure sections (LPS), respectively, at a temperature of 298 K. The initial
saturation ratio in the HPS for the humid case is 0.8. The density range is from 0.45 to
1.17 kgm−3 with a contour increment of 0.01 kgm−3.
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Figure 4. (a) The pressure and (b) the temperature profiles along the tube at 2.5ms. Dry
nitrogen: solid line; humid nitrogen: dotted line.
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Figure 5. (a) The pressure and (b) the temperature profiles along the tube at 6.5ms. Dry
nitrogen: solid line; humid nitrogen: dotted line.

heat release caused by condensation, pressure and temperature in the humid nitrogen
case are higher than in the dry nitrogen case. As shown in the space–time diagram of
figure 3, at 2.5 ms, the reflected shock has already intersected the contact surface and
the interaction between the reflected shock and the contact surface results in a weak
right-running shock wave, which is also captured by the numerical method. The weak
shock wave can be seen in figure 4 near the endwall of LPS. The evaporation process
has a considerable influence on the temperature profiles, as is shown in figure 5 for
t = 6.5 ms. The temperature in humid nitrogen with evaporation is close to that in
dry nitrogen because at t = 6.5 ms, evaporation has consumed most of the latent heat
released during condensation. However, phase transition affects the velocity of the
shock. It can be seen in figure 5 that the position of the main shock in the case with
condensation (xshock ≈ 0.7 m) is different from that in the dry case (xshock ≈ 0.75 m).

Now we will study the process of phase transition in more detail. As shown in
figure 6, the contours of the liquid mass fraction, the saturation ratio, the number
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Figure 6. The closed shock tube problem with humid nitrogen. Space–time diagrams: (a) con-
tours of the liquid mass fraction, (b) the saturation ratio, (c) the (de-)nucleation rate, (d) the
number density of droplets and (e) the modal radius. The number density of droplets (dotted)
and the (de-)nucleation rate (solid) histories at the end-wall of the HPS are shown in (f ). For
initial conditions, see text.

density of droplets, the (de-)nucleation rates and the modal radius for this closed
shock tube problem in humid nitrogen are plotted as space–time diagrams.

When the primary expansion wave passes the mixture in the HPS, the temperature
drops rapidly, which results in a rapid increase of saturation ratio from S < 1 to
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S � 1. Homogeneous nucleation and subsequently droplet growth take place there as
well. Because the nucleation rate is not very high (J � 1016 m−3 s−1), the liquid mass
fraction remains small owing to the relatively low number density of the droplets
(nd/ρ � 1012 kg−1). The most significant nucleation (J � 1020 m−3 s−1) appears in the
zone where the expansion wave reflects against the endwall of the HPS. As a result, the
liquid mass fraction increases rapidly from 0 to g > 0.012, with a simultaneous decrease
of S to 1. This region near the endwall of the HPS is characterized by its high number
density of droplets (nd/ρ > 1016 kg−1) with very small modal radius (rm < 100 nm).
The humid gas, sufficiently distant from the HPS endwall, only undergoes the
expansion due to the passage of the primary expansion fan. Nucleation rates and
droplet number densities remain relatively low, which leads to relatively large droplets
with a modal radius larger than 450 nm. The passage of the shock wave reflected
from the LPS endwall quenches the nucleation process instantaneously. Far away
from the HPS endwall, the droplets shrink while significant ‘de-nucleation’ does not
occur owing to the ‘large’ droplet diameters. Close to the endwall, however, the droplet
cloud is compressed twice. The droplets are so small there that a strong de-nucleation
is found, which results in a sharp decrease of g, nd/ρ and rm.

The history of the number density of droplets and the (de-)nucleation rates at
x = 0.5 mm from the endwall of the HPS are also shown in figure 6(f ). The number
density nd/ρ increases rapidly when strong nucleation takes place owing to the passage
of the expansion wave reflected from the endwall of the HPS. The passage of shock
waves leads to de-nucleation which results in a decrease of nd/ρ. The δ-function
shape of the de-nucleation rate is a consequence of the Kelvin effect, since the Kelvin
number becomes very high as r → 0.

It should be noted that in figure 6(c) there is also de-nucleation found around the
contact surface. This is not physical, but an artefact caused by the truncation error of
the numerical scheme. This truncation error is of second order in terms of grid size
and of time step, so that it can be made arbitrarily small by mesh refinement and by
choosing a smaller time step. This artificial de-nucleation is a local effect and has no
strong influence on the remainder of the flow field.

6. Phase transition in a pulse-expansion wave tube
The so-called pulse-expansion wave tube (PEWT) (Looijmans & van Dongen

1997), designed to study nucleation and droplet growth, is employed to validate the
new method. PEWT, one of the modern facilities to study homogeneous nucleation
experimentally, is based on the so-called nucleation pulse principle, originating from
Allard & Kassner (1965). The gas–vapour mixture of interest is brought in a
supersaturated state during a very short time �t , the so-called nucleation pulse,
such that an appreciable number of critical nuclei are formed. After this pulse, the
saturation ratio is reduced, but still larger than unity. Therefore, the nucleation process
is effectively quenched, but the droplets formed all start to grow simultaneously to
macroscopic sizes. The essential characteristic of the nucleation pulse method is that
nucleation, i.e. the birth of droplets, and the droplet growth process are separated
in time. As a consequence, the droplet cloud formed is almost monodisperse, which
greatly facilitates the characterization of the cloud in terms of the radius r of the
droplets and the number density nd . The monodispersity also renders the optical
measurement of r and nd of the cloud by light scattering and extinction reliable and
accurate. The nucleation rate J is then obtained by division of the droplet number
density by the time duration of the pulse, i.e. J = nd/�t .
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Figure 7. Right: x–t plot with schematic wave patterns in the pulse-expansion wave tube.
Left-hand side: resulting pressure history at the endwall of the HPS. Inset: enlargement of the
wider section of the LPS. The numbers indicate different regions separated by shock wave,
contact surface, expansion wave and waves from the interaction between the shock wave with
the wider part of the LPS. The pulse is between cd and e.

6.1. Experimental set-up

6.1.1. Pulse-expansion wave tube

The pulse-expansion wave tube is a high-pressure cylindrical (pmax = 100 bar,
diameter D =36 mm) shock tube, with a fast diaphragm-opening mechanism (opening
time less than 0.1 ms). The high-pressure part acts as the test section. The plane of
observation is at a short distance from the endwall of the high-pressure section (5 mm
in our experiments). A schematic view of the tube and the corresponding space–time
diagram is shown in figure 7.

The tube consists of a stainless steel HPS (length L = 1.26 m) and an aluminium
LPS with a length that can be varied between 5 and 9 m. Details are given in
Looijmans & van Dongen (1997). The test gas–vapour mixture is introduced into
the high-pressure section, while the LPS is kept at a lower-pressure level. Opening
of the diaphragm causes an expansion wave to travel to the left into the HPS,
causing the vapour to move to the right. Simultaneously, a contact surface and a
shock wave (starting shock) move to the right into the LPS. The expansion wave
reflects from the closed endwall of the HPS (a–b) which decelerates the gas particles
to the stagnant condition. The gas–vapour mixture near the endwall is thus first
isentropically expanding to a first level of supersaturation (state b) chosen such that
no appreciable nucleation yet occurs. The nucleation pulse (d–e) is generated through
a local wider part in the LPS, close to the diaphragm, and will be explained further
below. The test time for observing droplet growth is restricted by the arrival of the
starting shock wave, reflected from the endwall of the LPS. The most important waves
are indicated in the x–t diagram of figure 7, that also shows the expected pressure
history at the endwall of the tube.

The essential part of this PEWT is the wider part, which has a length of 15 cm
and a diameter of 41 mm, positioned in the LPS at a distance of 14 cm from the
diaphragm. When the starting shock wave passes the entrance of this part, owing
to the sudden increase in cross-sectional area, the shock wave decreases in strength
and a weak expansion wave is generated, which travels to the left into the HPS.
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Figure 8. Schematic view of the optical set-up at the observation plane. PMH, red extended
photomultiplier, d1,3, diaphragm; L1,3,4, lens; D1,2, photodiode; P1, polarizer; F, filter.

This expansion wave will decrease the pressure in the HPS further, the depth of the
decrease depending on the strength of the expansion, determined by the relative area
increase of the wider part of the tube. When the transmitted shock wave hits the exit
of the wider section, a weak shock wave is produced owing to the sudden reduction
of the cross-sectional area. This weak shock wave also travels to the left and results
in an abrupt increase of the pressure in the HPS. In this way, a pulse-shaped pressure
signal is formed. After the pulse, the pressure in the HPS will recover to the value
prior to the pulse. The duration of the pulse (d–e in the endwall pressure history)
depends on the length of the wider part of the LPS.

In normal PEWT operation, it is extremely important to know the thermodynamic
state at which the nucleation and droplet growth rates are measured. Therefore,
the temperature and the saturation ratio of the gas have to be determined in the
nucleation pulse. In each experiment, the initial pressure p0, initial temperature T0,
initial molar vapour fraction yv,0 and pressure history p(t) at the endwall of the
HPS are measured. By applying the isentropic flow assumption, the temperature in
the nucleation pulse at t = tp can be derived from the measured pressure p(t), for a
calorically perfect gas, as:

T (tp)

T0

=

(
p(tp)

p0

)(γ −1)/γ

. (6.1)

Once the history of the temperature and pressure during the pulse have been obtained,
the saturation ratio S in the nucleation pulse at time tp can be determined from:

S =
pv(tp)

ps(T (tp))
. (6.2)

In practice, p, T and S are averaged over the nucleation pulse period.

6.2. Optical droplet detection

The droplets at the observation plane are detected by an optical set-up. A schematic
view of this set-up is shown in figure 8. An argon-ion laser beam is first split into
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Figure 9. (a) Refined mesh and (b) azimuthal vorticity contours in the wider part at
t = 0.7 ms.

two parts: a reference beam, detected by photodiode D1, and a beam entering the
tube through the sidewall. The latter passes through the cloud of droplets and will
result in two effects: light scattering and light extinction. The transmitted light is
recorded by photodiode D2. The light scattered by the droplets (in the observation
plane) at an angle of 90◦ is detected by a red extended photomultiplier PMH. A
detailed description of this optical set-up can be found in Peeters (2002).

Three optical signals are measured during the experiment: the reference signal, the
transmission signal and the 90◦ light-scattering signal. The reference signal is used
to filter out the noise, caused by the laser, in the transmitted and scattered light. By
interpreting the extrema of the scattering intensity, droplet sizes at different times can
be determined by applying Mie theory (Van De Hulst 1981; Mishchenko, Travis &
Mackowski 1996). Combining light scattering with light extinction, the droplet number
density, nd , can be accurately obtained at each time corresponding to an extremum
in the plot of the intensity of the scattered light.

6.3. Results

Experimental and numerical results will be shown for water–helium as test gas and
helium as low-pressure gas. The length of the LPS is 4.39 m. Initially, the pressure in
the HPS is 1.775 bar, the initial mole fraction of water vapour is 0.00325 (Sini = 0.2)
and the pressure in the LPS is 1.10 bar. To reduce the computing time, the flow is
assumed to be axi-symmetric. The initial mesh has 2851 cells with a size of about
6 mm × 6 mm. The refinement level is set to 4 so that the minimum cell size is
0.375 mm × 0.375 mm. Part of the mesh of the wider section after local refining is
shown in figure 9. The azimuthal vorticity distribution in this section is also shown.
After the passage of the shock wave, we observe vortex shedding from the sharp
corners. It should be noted that the shape of the wider part is essential for the
nucleation pulse, so that a study of the influence of different shapes of the wider
part using the present numerical method is useful for designing and improving the
PEWT.

For comparison, pressure histories from simulation and experiment taken at a
distance of 5 mm from the endwall of the HPS are shown in figure 10 for the same
initial state, i.e. pressure in the HPS, temperature and composition. A good agreement
is found for the expansion wave and the nucleation pulse. Also the small waves due
to the interaction of the expansion wave with the wider part are reasonably described
at t = 4–6 ms. At t ≈ 9 ms, the starting shock wave reflected from the LPS endwall
arrives at the measuring position. There are discrepancies of strength and speed of the
reflected shock wave, which are due to viscous effects and of the flow resistances near
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Figure 10. (a) Droplet radius and pressure (solid line) from numerical simulation, and the
measured pressure (dotted line) at a distance of 5mm from the endwall of the HPS. The
experimental droplet radius is given by the solid triangles. (b) Histories of nucleation rate
(dotted line) and pressure (solid line) from the numerical simulation at a distance of 5mm
from the endwall of the HPS. Initial conditions: pHPS = 1.7754 bar, pLPS =1.1 bar; mole
fraction of water yv0 = 0.00325; carrier gas: helium; length of the LPS: 4.39m.

the diaphragm section, that have been neglected in our model. It should be noted that
the PEWT is designed for high pressure experiments (> 5 bar). For such conditions
the discrepancies are much smaller (see Looijmans & van Dongen 1997; Luijten,
Peeters & van Dongen 1999). Results for the mean droplet size and for the nucleation
rate are also shown in figure 10. The averaged nucleation rate in the nucleation
pulse determined from the experimental results is 2.2 × 1015 m−3 s−1. The numerical
simulation confirms that significant nucleation occurs in the nucleation pulse only
and that the nucleation rates reached are found in the experiment. Droplet growth
is accurately described by the model, with droplets attaining a maximum radius of
about 1 µm. After some time, the shock wave reflecting from the endwall of the LPS
arrives at the plane of observation, causing the droplet sizes to decrease rapidly owing
to evaporation. Effects of evaporation can be seen in figures 10 and 11. The droplet
size starts to decrease owing to the passage of the reflected starting shock wave.
The evaporation rate is somewhat overestimated because in the numerical simulation
the strength of the reflected shock exceeds the experimental one. In the numerical
simulation, the de-nucleation rate, if present, appears to be δ-function shaped owing
to the Kelvin effect. All the droplets disappear in a very short time (< 30 µs), which
indicates that all droplets have almost the same size. This also proves the effectivity
of the nucleation pulse principle in creating a monodisperse droplet cloud.

7. Summary and conclusions
We have studied the underlying physical principles of Hill’s method of moments in

detail and developed a physical model for compressible flows with phase transition
in which all the processes of phase transition, i.e. nucleation, droplet growth, droplet
evaporation and de-nucleation, are correctly described. The rate at which droplets
are passing the lower boundary of the droplet size distribution function in size
space is identified with the nucleation rate or de-nucleation rate for condensation or
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Figure 11. (a) The droplet radius (solid line) decreases with time. Since the cloud is
monodisperse, the de-nucleation rate (dotted line) is δ-function shaped. (b) Number density of
droplets (solid line) and de-nucleation rate (dotted line). The initial pressure is 1.7254 bar in
the HPS and 1.059 bar in the LPS. The water mole fraction yv0 is 0.00325. The length of the
LPS is 4.39m.

evaporation, respectively. For the case of condensation, the nucleation rate directly
follows from nucleation theory. The evaporation process is described as a shift
towards smaller radii of the undistorted size distribution function in size space. The
distribution function is cutoff at droplet size zero. The rate at which this lower limit is
passed, following a Lagrangian trajectory, is the de-nucleation rate. To evaluate this
de-nucleation rate, a shape of the size distribution function has to be adopted.

The effects of phase transition are demonstrated in the numerical simulation of
the flow in a closed shock tube with humid nitrogen as the driver gas. In the shock
tube, expansion waves and shock waves are generated, which reflect at the endwalls
and which interact, leading to a rather complex flow field. The shock speed and
the time-dependent values of pressure, temperature, wetness, etc. are affected by the
condensation and evaporation processes. Especially, the de-nucleation process results
in a decrease of the number density of droplets, and causes the liquid mass fraction
to decrease to zero eventually as a result of the passage of a shock.

The so-called pulse-expansion wave tube, designed to study nucleation and droplet
growth, is employed to validate the new method. In the pulse-expansion wave tube,
a gas/vapour mixture is subjected to a strong expansion wave followed by a pulse-
shaped smaller second expansion. In this way, nucleation (during the pulse) and
droplet growth (after the pulse) are separated in time. A number of experiments in
water–helium have been carried out, yielding information on gas pressure, droplet size
and droplet number density. All the phenomena observed experimentally are found
numerically. Deviation of results of numerical simulation and results of experiment
are caused by experimental non-idealities, such as pressure losses near the diaphragm
section and by friction not taken into account in the computational model.

This research was carried out within the framework of the J. M. Burgerscentrum,
Research School for Fluid Mechanics of the Netherlands. Dr Mingyu Sun and
Professor K. Takayama provided the source code of VAS2D, which is gratefully
acknowledged. The authors are very much indebted to Dr P. Peeters, D. Labetski and
V. Holten for their most valuable advice and assistance related to PEWT operation.
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Appendix A. Physical properties
This Appendix lists the physical properties used in the numerical simulations.

Nitrogen

m= 28.013 kg kmol−1 Reid, Prausnitz & Poling (1987)
Ra = 296.81 J kg−1 K−1 Ražnjewić (1977)

Cpa = 1041 J kg−1 K−1 Ražnjewić (1977)
Cva = 743.57 J kg−1 K−1 Ražnjewić (1977)

k = 2.55 × 10−2(T/295)0.838 Wm−1K−1 Touloukian, Liley & Saxena (1970)

µ = 17.6 × 10−6(T/295)0.767 kgm−1s−1 Touloukian et al. (1970)

Helium
m = 4.003 kg kmol−1 Reid et al. (1987)
Ra = 2077.077 J kg−1 K−1 Reid et al. (1987)

Cpa = 5192.69 J kg−1 K−1 Reid et al. (1987)
Cva = 3115.62 J kg−1 K−1 Reid et al. (1987)

k = −2.449 × 10−2 + 1.124 × 10−3T

−2.929 × 10−6T 2 + 4.493 × 10−9T 3

−2.518 × 10−12T 4 Wm−1 K−1 Hung, Krasnopoler &
Katz (1989)

µ = 0.698k/Cpa kgm−1 s−1

Water vapour

m =18.015 kg kmol−1 Reid et al. (1987)
Rv =461.52 J kg−1 K−1 Ražnjewić (1977)

Cpv =1859 J kg−1 K−1 Ražnjewić (1977)
Cvv =1397.5 J kg−1 K−1 Ražnjewić (1977)

k =7.341 × 10−3 − 1.013 × 10−5T

+ 1.801 × 10−7T 2 − 9.100 × 10−11T 3 Wm−1K−1 Reid et al. (1987)

µ =(1.823 × 10−6
√

T /(1 + 673/
√

T )) kgm−1s−1 Landolt–Börnstein (1962)

Latent heat of water

The latent heat of condensation or evaporation is taken from Sonntag & Heinze
(1982):

L(T ) = Rv(A10T
2 + 2A11T

3 + B1T − C0), [J kg−1] (A 1)

with: A10 = −2.7246×10−2 K−1, A11 = 1.6853×10−5 K−2, B1 = 2.4576, C0 = −6094.4642
K. The reference temperature for determining L0 and L1 is 273.15 K.

Saturated vapour pressure for water

The vapour pressure in Pa (T in K) is taken from Vargaftik (1975):

ps = 610.8 exp[−5.1421 ln(T/273.15) − 6828.77(1/T − 1/273.15)]. (A 2)

Density of liquid water

ρl(t) =




A0 + A1t + A2t
2 + A3t

3 + A4t
4 + A5t

5

1 + B0t
, for t � 0 ◦C

A6 + A7t + A8t
2, for t < 0 ◦C,

(A 3)

with ρl in kgm−3, t in ◦C and with (Pruppacher & Klett 1978):
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A0 = 999.84 kg m−3 A1 = 8.224944 kg m−3 K−1

A2 = −7.92221×10−3 kgm−3 K−2 A3 = −55.44846×10−6 kgm−3 K−3

A4 = 149.7562×10−9 kgm−3 K−4 A5 = −393.2952×10−12 kg m−3 K−5

A6 = 999.84 kg m−3 A7 = 0.086 kg m−3 K−1

A8 = −0.0108 kg m−3 K−2 B0 = 18.159725×10−3 K−1

Binary diffusion coefficients

water–nitrogen (Reid et al. 1987):

D = 24.5 × 10−6(T/295)2.085/p in m2 s−1, with p in bar

water–helium (Vargaftik 1975):

D = 398.38 × 10−7T 1.75/p in m2 s−1, with p in bar

Surface tension of liquid water

For the surface tension, we adopt the following fit to experimental data (Lamanna
2000):

σLD(T ) =




8.52000 × 10−2 − 3.54236 × 10−4T

+3.50835 × 10−6T 2 − 8.71691 × 10−9T 3, for T < 250.0 K,

(76.1 + 0.155(273.15 − T )) × 10−3, for T � 250.0 K,

(A 4)

with σ in Nm−1.

Appendix B. Definition of Nusselt numbers
During droplet growth there is a net flow of mass Ṁ and of energy Ė between the

surrounding mixture and the droplet. We first specify expressions for these flows in
two limiting cases.

Continuum limit

Ṁct = 4πr

(
Dm

RvTm

)
(peq

v − pv),

Ėct = 1
2
(Td + T )ṀctCpv + 4πkmr(Td − T )

≈ Ṁcthvs + Ḣ ct,




(B 1)

where hvs is the vapour enthalpy at equilibrium, and Ḣ ct is the heat flow from the
droplet to the surrounding. Note that peq

v is a function of the droplet temperature Td

and the droplet radius r: peq
v (Td, r).

Free molecular limit

Ṁ fm =4πr2

(
peq

v√
2πRvTd

− pv√
2πRvT

)
,

Ėfm =4πr2

[
pv(Cpv − 1

2
Rv)√

2πRvT
+

pa(Cpa − 1
2
Ra)√

2πRaT

]
(Td − T )

+ Ṁ fm
(
Cpv − 1

2
Rv

)
Td

≈ Ḣ fm + Ṁ fmhvs.




(B 2)



426 X. Luo, B. Prast, M. E. H. van Dongen, H. W. M. Hoeijmakers and J. Yang

Expressions for the Nusselt numbers in the limiting cases follow by a comparison
of (B 1), (B 2) and (2.9).

In the formulation above, the droplet temperature Td is unknown and has to be
calculated from the energy conservation for the droplet:

Ė =
d

dt
(Mdhd) = Ṁhd + Mdḣd, (B 3)

where hd and Md denote the droplet enthalpy and mass, respectively.
By using the quasi-steady ‘wet-bulb approximation’, which implies that the last term

in (B 3) is neglected, (B3) can be rewritten as:

Ė = −ṀL + Ṁhvs, (B 4)

with L the latent heat of condensation.
Using (B 4), (B 2) or (B 1), we find a simplified version of the wet-bulb equation:

Ḣ = −ṀL. (B 5)

Equations (B 5) and (2.9) provide an implicit formula to calculate the droplet
temperature Td:

NuḢ km(T − Td) = −NuṀL(Td)Dmod

pv − peq
v

p
. (B 6)

Once the droplet temperature Td has been determined, the droplet growth rate
directly follows from:

dr

dt
=

Ṁ

ρl4πr2
. (B 7)

We observe immediately that for the free molecular limiting case, the growth
rate (dr/dt)fm is in first-order independent of the droplet radius. There is a weak
dependence for small droplets because of the Kelvin effect (see (2.2)). Then in the free
molecular limit we have:(

dr

dt

)fm

=
1

ρl

(
peq

v√
2πRvTd

− pv√
2πRvT

)
. (B 8)

For the continuum limit, it follows that dr2/dt is independent of the droplet radius:(
dr2

dt

)ct

=
2

ρl

(
Dmod

RvTm

)(
peq

v − pv

)
. (B 9)

For the transition regime, the Nusselt numbers can be expressed as a combination
of the Nusselt numbers for the free molecular and the continuum regimes:

Nutr =
NuctNufm

Nuct + Nufm
. (B 10)

This formula shows the correct asymptotic behaviour for both small and large Kn
numbers, i.e. Nutr → Nufm as Kn → ∞, and Nutr → Nuct as Kn → 0.

Appendix C. Evaluation of explicit method for the droplet temperature
The absolute relative error |δ2| is plotted as a function of the saturation ratio S

and the gas temperature T in figures 12 to 14. The error parameter δ2 is defined in
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Figure 12. The relative error |δ2| in (Td/T − 1) for the explicit droplet growth expression.
Droplet radius: 0.1 µm. Pressure: (a) 1 bar; (b) 0.5 bar.
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Figure 13. The relative error |δ2| in (Td/T − 1) for the explicit droplet growth expression.
Droplet radius: 0.01 µm. Pressure: 0.5 bar.

terms of the driving force of droplet growth Td/T as:

δ2 =
(Td/T − 1)explicit

(Td/T − 1)implicit

− 1. (C 1)

In figure 12, the absolute relative error |δ2| is plotted for a droplet radius of 0.1 µm
and a pressure of 1 bar and 0.5 bar. For the mixture temperature higher than 240 K,
the relative error is smaller than 5 %. Comparing figures 12 and 13, we see that the
lower the pressure and the smaller the droplet radius, the smaller the error. For lower
temperatures and higher saturation ratios, it appears that using the implicit method
is inevitable.

In the case of evaporation, the pressure and temperature are higher. In addition,
during evaporation, the saturation ratio is smaller than unity. In figure 14, the relative
error is shown for a pressure of 1.5 bar and a droplet radius of 0.1 µm for a temperature
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Figure 14. The relative error |δ2| in (Td/T − 1) of the explicit expression for droplet
evaporation. Droplet radius: 0.1 µm. Pressure: 1.5 bar.

range (250 � T � 400) and for S < 1. For T > 300 K and S > 0.2, the error is smaller
than 5 %. However, it should be noted that for the strong evaporation associated with
strong shock waves, the saturation ratio is very small (for instance S < 0.1) and in that
case the explicit method results in large errors (> 10 %) in estimating the temperature
of the droplets Td . Adopting the implicit method is then again mandatory.
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